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Abstract. A non-equilibrium thermodynamics based model is proposed in order to describe the role of large
concentration fluctuations of enzymes, reactants and products in modulating the macroscopic time evolu-
tion of chemical kinetics. The encounter probabilities between reactants and enzyme depend on their local
concentration. Fluctuations modify the bimolecular encounter probability. Since, in turn, the amplitude
of fluctuations depends itself on the instantaneous composition of the reacting mixture, the time-varying
chemical composition acts as a positive feedback mechanism for the reactive fluid mixture near the critical
temperature for phase separation. The model is applied to rationalize the unusual features of phospholi-
pase A2 kinetics, an enzyme which catalyzes the hydrolisis of membrane forming phospholipids, yielding
products which are still soluble in the lipid matrix. A typical feature of the enzyme reaction is the long
induction time prior to a “burst” of activity. This effect is well reproduced by the theory, together with
the dependence of the induction time on the exogeneous addition of products or other liposoluble sub-
stances, the effects of enzyme and substrate concentration, and the temperature dependence of the enzyme
activation. All these properties emerge as a consequence of the coupling between enconter probability
and time-varying bilayer heterogeneity. A good qualitative agreement between theoretical results and the
available experimental results has been generally found.

PACS. 05.40.+j Fluctuation phenomena, random processes, and Brownian motion –
87.15.-v Molecular biophysics

1 Introduction

The rate of the bimolecular A + B chemical reactions de-
pends on the local concentration of A and B molecules.
Concentration fluctuations are expected to play an impor-
tant role by modifying the probability for simultaneously
finding two reactive molecules at the same site.

Additional complexity arises from the fact that the
fluctuation amplitudes depend themselves on the time-
varying concentration of reactants and products, leading
to a rather complex process where both fluctuations and
macroscopic reaction rates are strongly coupled.

One should expect particularly dramatic effects in
macromolecules involving kinetics (e.g., enzyme reactions)
because the relatively small translational entropy of large
molecules favours the growing of local fluctuations in com-
position, which eventually lead to a macroscopic phase
separation for unfavourable macromolecule-solvent inter-
actions.

In this study we propose a simple model to investi-
gate the effect of the time-evolving local heterogeneities
on the macroscopic (space-averaged) rates, just before the
phase separation of the reacting mixture forming compo-
nents. In other words, the analysis is limited to the re-

gion where fluctuations are unstable with respect to the
homogeneous phase. This assumption allows one to work
within a formalism related to the classical Cahn-Hilliard
theory of the spinodal decomposition, developed for unre-
active mixtures [1–3] and extended by a number of authors
to polymers [4–7], liquid crystals [8] and microemulsions
[9,10].

Upon a further change of chemical composition of the
reacting fluid, and for certain critical values of the inter-
molecular forces, the concentration fluctuations become
thermodynamically stable giving rise to long-lived micro-
domains. Kinetic equations for the late stage of phase-
separating fluids are described by totally different mod-
els derived from nucleation and crystal growth models
[11–13], the processes in the late stages are not consid-
ered in the present theory.

The model is employed to explain the unusual latency
period of phospholipase A2 kinetics, an important enzyme
involved in the hydrolisis of membrane forming phospho-
lipids. Specifically, in Section 2 the peculiar features of
the enzyme kinetics are briefly reviewed. In Section 3.1 we
develop a general theory accounting for the interplay be-
tween composition-dependent concentration fluctuations
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Fig. 1. Typical time evolution of phospholipase A2 catalyzed
hydrolysis of phospholipids. CP is the products concentration
and tind is the induction time prior to the burst of enzyme
activity. The arrow marks the addition of phospholipase A2.

and rate constants. Kinetic equations for phospholipase
A2 catalyzed hydrolysis in homogeneous (fluctuation free)
media are calculated in Section 3.2 and employed as a ze-
roth order approximation. In Sections 3.3 and 3.4 concen-
tration fluctuations in a solvent-free reaction bath formed
by a non-ideal mixture of substrate (phospholipids) and
products (lyso-phospholipids + fatty acid) are evaluated.
In section 3.5 the enzyme rate is corrected for the fluctu-
ations. Finally, in Section 4 the main predictions of the
theory are compared with experimental data taken from
the literature, and in Section 5 the main features, limits
and possible improvements of the model are briefly dis-
cussed.

2 Biochemical background

Phospholipase A2 is an enzyme weakly associated to the
lipid membrane which is involved in the hydrolisis of
double-chain phospholipids, yielding fatty acids and lyso-
phospholipids (single-chain phospholipids) as products
(for recent review articles see, e.g., [14,15]). It is worth
noting that both substrate and products remain substan-
tially within the lipid matrix during the reaction’s course,
constituting a “solvent free” reactive mixture which is in
contact with an adsorbed layer of enzymes. This provides
an ideal system because the fluctuations of the reactive
components are not damped by any solvent dilution ef-
fect.

The main typical features of the hydrolisis kinetics are:
A) The enzyme activity exhibits a phase lag followed by
a “burst” of activity. Increases as much as three orders
of magnitude over times as short as a few minutes have
been reported (see Fig. 1). B) The plot of the lag time
versus temperature shows a sharp minimum in the region
of the gel to liquid crystal phase transition of substrate.
C) A variety of substances, including the products of the
enzyme catalyzed hydrolysis, strongly modify the lag time.

These unusual features have been explained in differ-
ent ways [16–18] through a number of phenomenological

kinetic models which relate the abrupt burst of enzyme
activity with lipid matrix composition. Recently, some in-
teresting papers [19–22] pointed out the role of the non-
ideal mixing of the substrate (phospholipids) and products
(fatty acid + lysophospholipids) in modulating the en-
zyme activity. Specifically, it has been suggested that on
increasing the products’ concentration up to about 10%
[21] the reacting mixture undergoes a macroscopic phase
separation, near that critical concentration there is a burst
of activity [20,21]. However, recent evidence from enzyme
kinetics performed in lipid monolayers [22], together with
conflicting reports on the phospholipids and fatty acids
reciprocal miscibility in monolayers [23–27] and bilayers
[28–30] suggest that a macroscopic phase separation of
the reacting mixture components is not the unavoidable
perequisite for enzyme activation. Although concepts like
phase transition, phase separation, static and dynamic
heterogeneity of multicomponent lipid bilayers are still
rather vague and controversial (see, e.g., Ref. [31] for a
recent critical analysis of this issue), probably some con-
flicting views concerning the coupling between membrane
heterogeneity and enzyme activity might be reconciled fol-
lowing a different approach such as that we are going to
develop in the next sections.

3 Theory

3.1 Chemical reactions in a fluctuating medium

The concentrations of chemical species in a reacting
medium obey the continuity equation

∂φ

∂t
= −div J+ G(φ) (1)

where φ is a column vector of the concentrations (ex-
pressed as volume fractions), J is the vector of diffusional
fluxes of the chemical species related to the nonuniform
composition of the reacting mixture and G(φ) is a source
term which depends on the chemical reactions. It is useful
to split G(φ) into two components, in matrix notation it
reads

G(φ) = Hφ+ φ K φ̂ (2)

where the H and K matrices describe the unimolecular
and bimolecular kinetics constants, respectively. Gener-
ally, no higher order terms appear in the usual enzyme
kinetics, hence cubic or quartic terms (which sometimes
are responsible for interesting autocatalytic effects) are
here disregarded.

To proceed further, we write down the concentration
vector φ as

φ = φ̄(t) + η(r, t) (3)

where φ̄(t) is the homogeneous part (which depends only
on time) and η(r, t) is the fluctuating one, which depends
also on the space coordinates r. Clearly, the average over
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a macroscopic volume V and time τ (of the order of the

fluctuations lifetime), 1
V τ

∫
V

∫ t′+τ
t′

η(r, t)dt≡〈〈η(r, t)〉V 〉τ ,
vanishes whereas the average of the quadratic term
〈〈η(r, t)K η̂(r, t)〉V 〉τ is generally nonzero.

We now insert equations (2, 3) into equation (1) and
develop J in a series of gradient terms ∇nη about φ̄(t)

J(φ(r, t)) =
∞∑
n=1

bn(φ̄(t))∇nη(r, t) (4)

(b0(φ̄(t)) = 0 because the diffusive flux exists only in sys-
tems with a concentration gradient), using the obvious
identity

η(r, t)K η̂(r, t) = 〈〈η(r, t)K η̂(r, t)〉V 〉τ
+ (η(r, t)K η̂(r, t)− 〈〈η(r, t)K η̂(r, t)〉V 〉τ ) (5)

(K = 1
2 ∂

2G/∂φ2|φ̄(t)) we transform equation (1) as

∂φ̄(t)

∂t
= G(φ̄(t)) + 〈〈η(r, t)K η̂(r, t)〉V 〉τ (6a)

∂η(r, t)

∂t
=− div

∞∑
n=1

bn(φ̄(t))∇nη(r, t)

+
∂G
∂φ

∣∣∣∣
φ̄(t)

η(r, t) + (η(r, t)K η̂(r, t)

− 〈〈η(r, t)K η̂(r, t)〉V 〉τ ). (6b)

At a first sight the resulting equations look more com-
plex than the original ones; the above procedure, how-
ever, takes advantage on the different time scale of the
kinetics processes. Indeed, since we are limiting the anal-
ysis to energetically unfavourable local inhomogeneities,
we may suppose that their life time τ is short, hence for
t′ < t < t′ + τ the chemical composition of the fluid re-
mains practically constant. Therefore, one may average
equation (6a) over τ with the aid of the relationships

1

τ

∫ t′+τ

t′

∂φ̄(t)

∂t
dt =

1

τ
(φ̄(t′ + τ)− φ̄(t′)) ∼=

∂φ̄(t′)

∂t′

1

τ

∫ t′+τ

t′
G(φ̄(t′))dt ∼= G(φ̄(t′)) (7)

yielding

∂φ̄(t′)

∂t′
= G(φ̄(t′)) + 〈〈η(r, t)K η̂(r, t)〉V 〉τ . (8a)

Now the last term in equation (8a) depends on the “slow”
time t′ alone, hence equation (8a) can be easily integrated.

By contrast equation (6b), which rules the time evolu-
tion of the fluctuations, vanishes upon averaging over τ .
This is because the fluctuations evolve through a “fast”
variable t and, therefore, in equation (6b) one may re-
place the slowly varying chemical composition φ̄(t) by a

constant term, φ̄(t′), calculated by equation (8a)

∂η(r, t)

∂t
= −div

∞∑
n=1

bn(φ̄(t′))∇nη(r, t)

+
∂G
∂φ

∣∣∣∣
φ̄(t′)

η(r, t)

+ (η(r, t)K η̂(r, t)− 〈〈η(r, t)Kη̂(r, t)〉V 〉τ ). (8b)

Equations (8a, 8b) are solved for the slow (φ̄(t′)) and
fast (η(r, t)) variables, respectively. The coupling term
〈〈η(r, t)K η̂(r, t)〉V 〉τ in the right hand side of equation
(8a) accounts for the evolution of the macroscopic (space
averaged) chemical composition induced by the concen-
tration inhomogeneities.

Under the above assumptions one expects small fluctu-
ations, so we look for a perturbation solution of equations
(8). The zeroth order approximation reads

∂φ̄(0)(t′)

∂t′
= G(φ̄(0)(t′)) (9a)

which is all but nothing more than the classical kinetics
equation for homogeneous media. By retaining only linear
terms in η(r, t), one finds from equation (8b) [32]

∂η(0)(r, t)

∂t
=− div

∞∑
n=1

bn(φ̄(0)(t′))∇nη(0)(r, t)

+
∂G
∂φ

∣∣∣∣
φ̄(0)(t′)

η(0)(r, t)

∼=− div
∞∑
n=1

bn(t′)∇nη(0)(r, t). (9b)

Higher order terms can be calculated in a standard way.
The above equations have been obtained by assuming that
the evolution of the chemical composition is slower than
the life time of the concentration inhomogeneities [33].
However, the time evolving chemical composition has a
dramatic effect on the amplitude of fluctuations. In fact,
for each value of the chemical composition, the fluctua-
tions (ruled by the fast variable t) are modulated by the
instantaneous composition alone (ruled by the slow vari-
able t′).

In order to calculate the first order correction φ̄(1)(t′)
we used the expressions for η(0)(r, t) calculated by equa-
tion (9b). Inserting them into equation (8a) we obtain
the sought – for expression for the fluctuation – enhanced
chemical reactivity

∂φ̄(1)(t′)

∂t′
=
∂G
∂φ

∣∣∣∣
φ̄(0)(t′)

φ̄(1)(t′)

+ 〈〈η(0)(r, t)K η̂(0)(r, t)〉V 〉τ (10)

where, as previously said, the last term depends upon
φ̄(0)(t′).

The calculation of the zeroth order concentration vec-
tor φ̄(0)(t′) for the phospholipase A2 enzyme reaction in an
ideal homogeneous fluid is performed in the next section.
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Fig. 2. Schematic picture for the composition
evolution of phospholipase A2 containing lipid
membrane in the early (A), intermediate (B)
and late stages (C) of bilayer enzymatic hy-
drolysis. Enzymes are depicted as circles which
may form dimers, the activity of which was as-
sumed to be much larger than the activity of
the monomeric enzymes. The grey and black
regions denote increasing concentrations of the
enzyme reaction products (lysophospholipids
+ fatty acids). See text for further explana-
tions.

3.2 Calculation of the zeroth order enzyme kinetics

The following simplified kinetic scheme has been consid-
ered:

E + E
kd−→ E2

E2 + S
k1−−→
←−−
k−1

Y (11)

Y
kf−→ E2 + P

here E is the enzyme in its inactive monomeric form, E2

is the active enzyme dimer, Y is the activated complex, S
and P are substrate and products, respectively. The first
equation describes enzyme activation consequent to the
formation of highly reactive dimers (or n-mers) and is
based on much experimental evidence set forth by a num-
ber of authors [17,18,34–37], whereas the second and third
equations are typical of a standard enzyme kinetics. The
zeroth order kinetics equations, valid for a random distri-
bution of reactants, enzyme and products are

−
dC(0)

E

dt′
= kdC(0)2

E (12a)

dC(0)
Y

dt′
= k1 C(0)

S C(0)
E2
− (k−1 + kf)C(0)

Y (12b)

dC(0)
P

dt′
= kf C(0)

Y (12c)

where C(0)
j is the zeroth order concentration expressed as

number of j-th particles/number of total particles. Gener-
ally, kinetic equations are expressed in terms of molar con-
centration Cj because the encounter probability depends
on the number of particles. By contrast, the flux of parti-
cles during fluctuation is more conveniently described by
the volume fraction φj (see Sect. 3.3). The two quantities
are related each other by

Cj = φj/Nj (13)

where Nj is the molar volume of the j-th species (com-
pared with a reference volume, e.g., the solvent volume).
All the following formulas will be expressed in terms of
φj .

Equations (12) are easily solved under the stan-
dard steady state assumption for the activated complex:

dC(0)
Y /dt′ = 0. Moreover, in a lipid bilayer the phos-

pholipase A2 is always in contact with a large number
of phospholipids making the enzyme-substrate encounter
probability independent of the substrate concentration:

k1C(0)
S C(0)

E2

∼= keff
1 C(0)

E2
, an approximation experimentally

validated for chemical reactions in amphiphilic assemblies
[38].

By imposing the mass conservation: C̄E = C(0)
E +2C(0)

E2
+

2C(0)
Y ( C̄E being the bound enzyme concentration),

and applying the boundary conditions: C(0)
E |t′=0 = C̄E;

C̄(0)
E2
|t′=0 = C(0)

Y |t′=0 = 0, one gets exact expressions for
the zeroth order concentrations

φ̄
(0)
E (t′) = NE C(0)

E (t′) =
φ̄E

1 + kd(φ̄E/NE)t′
(14a)

φ̄
(0)
P (t′) = NLC(0)

P (t′) = (NLγφ̄E/kdNE)

× (t′ −
1

kd(φ̄E/NE)
log(1 + kd(φ̄E/NE)t′)

∼=


1

2

φ̄2
E

N2
E

NLγt
′2 t′ → 0

NL

NE

φ̄E

kd
γt′ t′ →∞

(14b)

where NE is the enzyme mass (setting the solvent mass
NW = 1); products and substrate have comparable
masses, hence NS

∼= NP = NL, NL being the mass of a
typical lipid molecule. The parameter γ is related to ki-
netic coefficients defined in scheme (11)

γ =
1

2

keff
1 kdkf

keff
1 + k−1 + kf

(15)

φ̄E is the concentration (expressed as volume fraction) of
the membrane-associated enzymes, in the hypothesis of
a fast equilibrium among bound and water-dissolved en-
zymes. For the time being, we will assume that φ̄E does
not appreciably change with the bilayer mean composi-
tion (a good approximation in the early stages of the pro-
cess, a detailed analysis of this issue has been reviewed,
e.g., in Refs. [14,15,39]). The model, however, can be eas-
ily extended to also consider products-dependent enzyme
binding as discussed in Appendix D.
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Once the concentration of the different components has
been calculated, one may estimate, for each instantaneous
composition of the reacting fluid, the space and time con-
centration fluctuations for all the chemical species.

3.3 Calculation of concentration fluctuations
in a reacting medium

In this subsection we estimate the amplitude of concentra-
tion fluctuations for a system which undergoes a chemical
transformation. Fluctuations sustained by chemical reac-
tions are conceptually different from those found in inert
media because their amplitudes depend on the instanta-
neous chemical composition which, in turn, modifies the
mixing properties of the fluid.

To proceed further, we need an explicit formula for the
flux J of the molecules entering a volume element during
the thermally-sustained fluctuations. Such an equation is
obtained by assuming a linear relationship between fluxes
and forces, the formal expression for a generic j-th com-
ponent of the vector J is [5]:

Jj(r) =−
1

kT

∫
Λjj(r− r′)∇µj(r

′)dr′

∼=−
1

kT
Λjj∇µj (16)

where Λjj(r−r′) is an Onsager mobility coefficient (Λlj(r−
r′) ∼= 0 when l 6= j) and µj(r) is the local chemical po-
tential of the j-th component (the thermal energy kT
has been extracted for convenience). In heterogeneous me-
dia, the chemical potential µj is defined as the functional
derivative of the free energy:

µj = δFtot/δφj = ∂Ftot/∂φj −∇∂Ftot/∂(∇φj)

+∇2∂Ftot/∂(∇2φj) + · · · (17)

µj can be calculated from the analytical expressions for
the total free energy Ftot. A simple but reliable expression
for Ftot is of a Landau-Ginzburg type

Ftot = kT

∫
V

(
f(φ) +

1

2

∑
l

∑
j

κlj∇φl∇φj

+
∑
j

φj FjR(r)

)
dV (18)

where the sums span over the M components. The terms
κlj (κlj = κjl) scale the effect of concentration gradients
on the heterogeneous fluid free energy, their explicit ex-
pressions will be reported later. The homogeneous part of
the free energy, f(φ), takes the usual meanfield expression
(see, e.g., Ref. [40])

f(φ) =
∑
j

φj

Nj
logφj +

1

2

∑
l

∑
j

χljφlφj (19)

with
∑
j φj = 1. Here the first term accounts for the trans-

lational entropy of the M components, each of them with
mass Nj , and the second term describes a mean-field two-
body interaction, with χlj a temperature dependent effec-
tive interaction parameter. Large and positive values of χlj
mean a strong tendency toward phase separation. Finally,
the last term in equation (18) accounts for the random
force FjR(r) acting on the generic j-th component related
to the thermal energy of the heat bath. FjR(r) can be
describe by a superposition of standing waves through a
Fourier series expansion

FjR(r) =

∫ +∞

−∞

∑
q

Bjq(ω)eiqr+iωtdω (20)

the coefficients Bjq(ω) are calculated by imposing the con-
dition that FjR(r) has zero mean and satisfies the energy
equipartition principle.

Calculating the chemical potentials µj as the func-
tional derivative of Ftot (Eq. (17)) and comparing this
result with the series expansion of J, equation (9b), one
gets

Jj =
∞∑
n=1

bn(φ̄(0))∇nη(0) = −
Λjj

kT
∇µj

=−
M∑
l=1

Λll

[
∂2f

∂φl∂φj

∣∣∣∣
φ̄(0)

∇η(0)
l − κljΛ

3η
(0)
l

]
(21)

− Λjj∇FjR(r) + O(η
(0)2

l )

f(φ) and κlj given by equations (18, 19). Inserting this
result into equation (9b) and exploiting the harmonic ex-
pansion of the random force, (Eq. (20)), eventually one
finds

∂η
(0)
j

∂t
=

M∑
l=1

Λll

[
∂2f

∂φl∂φj

∣∣∣∣
φ̄(0)

∇2η
(0)
l − κlj∇

4η
(0)
l

]

− Λjj
∑
q

∫ +∞

−∞
q2Bjq(ω)eiqr+iωtdω. (22)

We look for a Fourier series expansion for the system of
linear partial differential equation (22). A particular solu-

tion is: A
(0)
jq (ω) exp(iq · r + iωt), inserting this expression

into equation (22) one derives a set of linear algebraic

equations which are solved for A
(0)
jq (ω)

iωA
(0)
jq (ω) =− q2

( M∑
l=1

Λll

(
∂2f

∂φl∂φj

∣∣∣∣
φ̄(0)

+ q2κlj

)
A

(0)
lq (ω)

+ ΛjjBjq(ω)

)
. (23)

Therefore, the general solution of equation (22) is

η
(0)
j =

∫ +∞

−∞

∑
q

Ajq(ω)eiq·r+iωtdω (24)
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where the amplitudes A
(0)
jq (ω) are calculated by equation

(23).

Equation (24) is the searched formula which relates
the space and time concentration fluctuations of a react-
ing fluid with its molecular properties. The fluctuations
are represented by a superposition of standing waves, the
amplitudes of which depend in a rather complex way on
the mixing properties of all the M components.

3.4 Concentration fluctuations during enzymatic
hydrolysis of a lipid bilayer

Phospholipase A2 catalyzed hydrolysis of phospholipids
provides an ideal system for investigating the role of the
concentration fluctuations on enzyme kinetics. Indeed, the
lipid bilayer constitutes a “solvent free” reacting fluid
where the fluctuations of the different components (bound
enzyme, substrate and products) are not damped by large
amounts of inert solvent, allowing for a huge amplification
of the dynamic heterogeneity effects.

Let us apply the results derived in the above section to
the phospholipase A2 catalyzed reaction. Letting ηE, ηE2

and ηP be the concentration fluctuations of bound en-
zyme (in its monomeric (E) and dimeric (E2) form) sub-
strate and product(s), one may reduce the number of the
constitutive equations by considering the products of the
enzyme hydrolysis (fatty acid and lysophospholipid) as an
unique chemical specie, the properties of which are the av-
eraged properties of the two components. Moreover, since
we are interested in the early stages of the kinetics, we
may safely neglect the concentration fluctuations of the
enzyme dimers, because their concentration remains very
small before the burst of activity. By exploiting the mass
conservation constraints

φP + φS = 1 and φE + φW = 1 (25)

(S = substrate and W = interfacial water) together with
equation (16), we may write down the simple relation-
ships for the fluxes of the different chemical components:
kT JP = −Λeff

P ∇(µP − µS) and kT JE = −Λeff
E ∇(µE −

µW) where Λeff
P ≡ ΛPPΛSS(ΛSS + ΛPP)−1 and Λeff

E ≡
ΛEEΛWW(ΛEE + ΛWW)−1. Since Λj = Djφj , Dj being
the diffusion coefficient of the j-th component [5], consid-
ering that in the early stages of enzyme kinetics both φE

and φP are small, one gets Λeff
P
∼= DPφP and Λeff

E
∼= DEφE,

hence the above expressions for JP and JE reduce to

kT JP
∼= −DPφP∇(µP − µS) (26a)

kT JE
∼= −DEφE∇(µE − µS) (26b)

JP + JS = 0 (26c)

JE + JW = 0. (26d)

Starting from the general expression for the free energy
(Eqs. (18-20)), one gets [41]

Ftot/kT =

∫
S

[
1

NE
φE log φE + φW log φW

+
1

NL
(φP log φP + φS log φS) +

1

2
χPφSφP +

1

2
χEφWφE

+
1

2
ΩφE(φP − φS) +

1

2
κP(∇φP)2 +

1

2
κE(∇φE)2

+
∑
j

φj FjR(r)
]
dS. (27)

The first four logarithmic terms describe the mixing en-
tropy of the aqueous surface layer (which contains bound
enzyme and water) as well as the entropy of the lipid
bilayer components, i.e. products (lysophospholipids +
fatty acids) and substrate (phospholipids), respectively.
NE and NL are the enzyme and lipid masses referred to
the solvent NW (products and substrate have compara-
ble masses: NP

∼= NS = NL, the mass of a typical lipid
molecule).

The parameters χP, χE and Ω account for the mixing
properties of enzyme, substrate and products. Specifically,
χE measures the tendency of the enzyme molecules to clus-
ter together at the surface of (or inside) the lipid mem-
brane. Extensive studies on the clustering of integral pro-
teins have been reported in the literature (e.g., Ref. [42]),
evidencing a rather general tendency of integral proteins
to form aggregates (χE > 0).

The parameter χP > 0 is a measure of the immiscibil-
ity between substrate (phospholipids) and products (fatty
acids + lysophospholipids). Calorimetric and fluorimetric
measurements (e.g., Refs. [21,27,43]) provide some infor-
mation on the phase diagram of these ternary mixtures,
evidencing poor miscibility between substrate and prod-
ucts. The parameter Ω accounts for the preferential bind-
ing of the enzyme onto products-rich or substrate-rich re-
gions of the membrane. The preferential solvation of the
phospholipase A2 by products is well-known, playing a role
in determining the enzyme activation. The terms propor-
tional to κj(∇2φj) describe the unfavourable energy due
to spatial gradients of concentration [44]. Finally, the last
term in equation (27) mimics the interaction of the ther-
mal random forces with the different components.

As discussed in Appendix A, the zeroth order

solution for the fluctuating components η
(0)
j is

η
(0)
j =

∑
q

∫ +∞

−∞
A

(0)
jq (ω) exp(iq · r + iωt)dω,

where, for the particular case of the phospholipase A2 cat-

alyzed reactions, the coefficientsA
(0)
jq (ω) are found by solv-

ing the equations

A
(0)
Eq (ω)(iω +QEE) +A

(0)
Pq (ω)QEP =− FE (28a)

A
(0)
Eq (ω)QPE +A

(0)
Pq (ω)(iω +QPP) =− FP (28b)
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where:

QEE ≡ q2DEφ̄
(0)
E

[
1

NEφ̄
(0)
E

+
1

1− φ̄(0)
E

− χE + q2κE

]
(29a)

QPP ≡ q2DPφ̄
(0)
P

[
1

NLφ̄
(0)
P

+
1

NL(1− φ̄(0)
P )
−χP+q2κP

]
(29b)

QPE ≡ −q2DPφ̄
(0)
P Ω (29c)

QEP ≡ −q2DEφ̄
(0)
E Ω (29d)

Fj ≡ q2Djφ̄
(0)
j Bjq(ω) ∝ 2q2Djφ̄

(0)
j (kT )1/2 j = E or P

(29e)

where the last identity (Eq. (29e)) follows from the energy
equipartition principle [45]. It is worth noting that enzyme
and products fluctuations are strongly coupled through
the QEP and QPE terms. In other words, the flux of the
enzymes over the bilayer surface follows the flux of the
products because of the preferential affinity of the enzyme
for domains with a given composition.

Pictorially, this situation is sketched in Figure 2 where
we draw the concentrations of substrate, products and en-
zyme (monomers and dimers) at different times, namely
t′ = 0 (panel A), intermediate (panel B) and late stages
(panel C) of enzyme kinetics, under the assumption of
a better enzyme binding (solubility) to the products-rich
regions. At t′ = 0 enzymes are mostly in their inactive
monomeric form and the bilayer contains only untrans-
formed phospholipids. In the early stages of the enzyme
hydrolysis a certain amount of products are formed and
stored within the membrane, hence large concentration
fluctuations begin to develop because of the substrate
and products poor reciprocal miscibility. Enzymes, which
preferentially bind to products-rich regions, undergo fast
dimerization because of the increased local concentration
(panel B) forming active dimers (or multimers) which
rapidly hydrolize the surrounding phospholipid molecules.
This self-sustained catalytic cycle continues until, in the
late stages of the process, the system phase-separates and
the amount of available substrate decreases (panel C). The
late stage kinetics is far beyond the validity of the theory
and will be qualitatively discussed in the next section.

Turning again to mathematics, solution of equations

(28) yields explicit expressions for η
(0)
P and η

(0)
E

η
(0)
P =

∑
q

∫ +∞

−∞

iωFE + FEQPP−FPQEP

ω2 − iω(QPP +QEE)− (QPPQEE −QEPQPE)
eiqr+iωtdω (30a)

η
(0)
E =

∑
q

∫ +∞

−∞

iωFP + FPQEE − FEQPE

ω2 − iω(QPP +QEE)− (QPPQEE −QEPQPE)
eiqr+iωtdω (30b)

η
(0)
S = −η(0)

P (30c)

In writing equations (30) unessential transient terms
have been dropped because they do not contribute after
time averaging.

By knowing the concentration fluctuations for enzyme,
products and substrate, we are now in a position to cal-
culate their influence on the enzyme rate.

3.5 Calculation of fluctuation-enhanced enzyme
kinetics

The amplitude of concentration fluctuations, calculated
in the previous section, enable us to estimate the en-
hancement of the macroscopic chemical rate through a
repeated use of equation (10). Adopting the simplified
kinetic scheme devised in equation (11) one gets

〈〈η(0)K η̂(0)〉V 〉τ = kd〈〈η
(0)2

E 〉V 〉τ , whence

−
dC(1)

E

dt′
= kd(2C(0)

E C(1)
E +

1

N2
E

〈〈η(0)2

E 〉V 〉τ ) (31a)

dC(1)
Y

dt′
= keff

1 C(1)
E2
− (k−1 + kf)C(1)

Y (31b)

dC(1)
P

dt′
= kf C(1)

Y (31c)

where C(1)
j is the fluctuation-modified concentration of

the j-th chemical specie and the zeroth order expression

for C(0)
E ≡ C(0)

E (t′) is given in equation (14a).
Apart from the obvious consideration that the concen-

tration fluctuations do not affect the unimolecular chem-
ical reactions (e.g., dissociations), in the early and in-
termediate stages of the hydrolysis the enzyme-substrate
encounter probability is independent of the local sub-
strate heterogeneities because the enzymes are always
surrounded by a large amount of untransformed phospho-
lipids [38].

Furthermore, the concentration fluctuations of the
products do not directly enter into the kinetic equations
(31) because any specific inhibition or activation of the
enzyme by products has been ruled out. However, as previ-
ously said, products and enzyme fluctuations are strongly
coupled because of the preferential binding of the enzyme
to products-rich (or products-poor) regions. This coupling

strongly enhances the term kd〈〈η
(0)2

E 〉V 〉τ/N2
E (contained

in Eq. (31a)) which describes the enhancement of the for-
mation of active dimers by products-assisted enzyme con-
centration fluctuations. Its explicit expression is given by
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equation (31b), which after separating the real and imagi-
nary part and exploiting the results reported in Appendix
B, one finds after some algebra:

〈〈η(0)2

E 〉V 〉τ =

= 4D2
E φ̄

2
E kT

∑
q

q4

∫ +∞

−∞

ω2 + C(q)

ω4 + ω2A(q) +B2(q)
dω

≡ 4πD2
E φ̄

2
E kT

∑
q

q4C(q)

B(q)
(32)

where

A(q) = Q2
PP +Q2

EE + 2QPEQEP (33a)

B(q) = QPP +QEE −QPEQEP (33b)

C(q) = (QPP −
FP

FE
QEP)2. (33c)

The approximate solution (32) is valid for B(q) � 1.
Namely, when the reacting fluid approaches the phase sep-
aration among reactants and products.

Solving equations (31) for C(1)
E together with the

boundary conditions C(1)
E |t′=0 = C(1)

E2
|t′=0 = C(1)

Y |t′=0 =

0, the mass conservation constraint C(1)
E +2C(1)

E2
+2C(1)

Y =

0 and the steady-state condition dC(1)
Y /dt′ = 0, one gets

an exact analytical result

∂ C(1)
P

∂t′
=

=
γ/N2

E

(1 + kd C̄Et′)2

∫ t′

0

(1 + kd C̄Et
′′)2〈〈η(0)2

E (t′′)〉V 〉τdt′′

=
4π(γ/N2

E)kT

(1 + kd C̄Et′)2
D2

Eφ̄
2
E

×
∑
q

q4

∫ t′

0

(1 + kd C̄Et
′′)2C(q, t′′)

B(q, t′′)
dt′′ (34)

with γ defined through equation (15). Equation (34) en-
ables us to calculate the effect of space and time fluctu-
ations on the products formation rate for the phospho-
lipase A2 catalyzed reaction. As previously stated, the
fluctuation-dependent term is small, but it becomes large
on approaching the phase separation between substrate
and products. Since the products concentration varies
with time, the latency period t′ind prior to the burst of
activity can be calculated by imposing the condition that

the fluctuation-related term 〈〈η(0)2

E 〉V 〉τ must diverge at
t′′ −→ t′ind. According to equation (34), this happens when
the denominator B(q) vanishes. Therefore, at t′′ = t′ind
one finds [46]

B(q, t′ind) ≡ QPPQEE −QPEQEP = 0. (35)

Replacing Qlj ’ s by their analytical expressions
(Eqs. (29)), yields

B(q, t′ind) = q4DPDEφ̄
(0)
P (t′ind)φ̄

(0)
E (t′ind)

×
[
(

1

NEφ̄
(0)
E (t′ind)

− ξEE(q)(
1

NLφ̄
(0)
P (t′ind)

−ξPP(q))−Ω2
]

= 0 (36a)

ξEE(q) ≡ −1 + χE − q2κE (36b)

ξPP(q) ≡ −
1

NL
+ χE − q2κP. (36c)

For the sake of simplicity, in equations (36a-c) we set

1 − φ̄(0)
P (t′) ∼= 1, 1 − φ̄(0)

E (t′) ∼= 1, and φ̄
(0)
E (t′) ∼= φ̄E, ap-

proximations valid in the early stages of the enzyme ki-
netics (this assumption is discussed in Appendix C where
a procedure valid in a wider range of concentrations has
been developed. The main conclusions, however, are not
modified by more elaborated calculations). Hence, using
equations (14a,c) one gets

t′ind
∼=

[
2

γ

1−NEφ̄EξEE(q)

ξPP(q) −NEφ̄E(ξPP(q)ξEE(q) − ξ2
PE(q))

]1/2

×
NE

NL

1

φ̄E
(37a)

∼= (2N2
E/γN

2
LξPP(q))1/2 1

φ̄E
+ const.+ O(φ̄E). (37b)

γ, defined through equation (15), is a function of the ki-
netic constants alone. Equation (37) is the main result of
this work. At small enzyme concentrations φ̄E one should
observe a linear dependence between t′ind and φ̄−1

E with a
positive slope and nonzero intercept as shown in Figure 3.
We will return to this formula in the next section when we
compare our predictions with the available experimental
data.

Once t′ind has been obtained, one may calculate the
rate of products formation just before t′ind (see Fig. 1).
Details are reported in Appendix E, here we quote the
final expression:

C(1)
P (t′) ∼= 0 t′ind � t′ (38a)

C(1)
P (t′) ∼= 2πDEDPkT φ̄E(2γ)1/2Ω2

∑
q

q4

ξ
5/2
PP (q)

f(t′)

(38b)

t′ind + ∆t′ < t′ < t′ind

where f(t′) ≡ (t′+(t′ind−t
′)log

t′ind−t
′

∆t′ ) > 0 is an increasing
function of t′. This formula will be discussed at point i) of
the next section.

4 Results and discussion

Let us summarize the main predictions of our model for
fluctuation-enhanced enzyme catalyzed reactions. Once
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Fig. 3. Qualitative variation of the induction time tind vs. the
inverse of bound enzyme concentration φ̄E. Curve A: the mean
surface density for bound enzymes φ̄E increases along with the
products formation (Ω > 0); curve B: φ̄E decreases along with
the products formation (Ω < 0).

again, we want to stress that the results are valid only
in the early stages of the enzyme kinetics when the sub-
strate/products unmixing is not favoured because of the
small products concentration. A qualitative extension of
the theory to the thermodynamically stable two-phase re-
gion will be briefly discussed at point g.

The calculated quantities are: the length of the induc-
tion time, t′ind, prior to the burst of activity (Eq. (37)),
and the rate of enzyme catalysis on approaching t′ind
(Eq. (38)).
a) The thermal fluctuation-related contribution to the en-

zyme kinetics, C(1)
P (t′), is always positive and grows with

time. This term is zero at t′ = 0, remains small until the
reacting fluid approaches the lateral phase separation be-
tween reactants and products (Eq. (38a)), then rapidly
grows with time at the phase transition (Eq. (38b)). Ac-
cording to equation (37), the induction time depends both
on thermodynamics (basically, the reactant-products mis-
cibility parameter ξPP(q) and the enzyme binding con-
stant) as well as on a combination of kinetic constants
(the parameter γ defined by Eq. (15)). Long induction
times occur in the case of poor miscibility, slow enzyme
dimerization rate and small catalytic activity.
b) The critical concentration of unmixing, and hence the
lag time, depends on the products concentration, which
is zero at the beginning of the enzyme kinetic. Therefore,
the exogenous addition of even a small amount of prod-
ucts should shorten the lag time length. This effect can be
accounted for, following the procedure employed to derive
equation (37b), by considering both the endogenous, φ̄P,
and the hexogenous, φ̄exo

P , products concentration. Calcu-
lations show that the lag time t′ind now also depends on
φ̄exo

P according to the simple equation [47]

t′ind
∼= (t′ind)0(1− const. φ̄exo

P )1/2 φ̄exo
P � 1 (39)

(t′ind)0 being the lag time when φ̄exo
P = 0 (its analytical

expression is given by Eq. (37) and const. ∝ ξPP(q) ≥ 0).

The above result agrees fairly well with the experimental
findings (e.g., Refs [17,21,48]).

c) The lag time decreases on increasing the bound enzyme
concentration φ̄E. According to equation (37b) the plot of
(lag time) versus φ̄−1

E is a straight line with positive slope
and nonzero intercept. The slope chiefly depends on the
reciprocal miscibility between reactants and products, the
larger the incompatibility the shorter the latency. Devia-
tions from this behaviour should be observed at high en-
zyme concentration (see Fig. 3). experimental data taken
from the literature [17,21,49] support this prediction, ex-
hibiting a good straight with positive slope, much similar
to the curve reported in Figure 3.

As shown in Appendix D, a more refined model which
allows for the products-modulation of the averaged en-
zyme binding does not affect the (quasi) linear relation-
ship between the induction time t′ind and the inverse of
the bound enzyme concentration. Under the assumption
of a fast equilibrium between free and bound enzymes,
the fast equilibrium between free and bound enzymes, the
slope slightly increases for a better enzyme solubility in
the products-rich regions, and decreases for a large solu-
bility of the enzyme in the products-poor domains of the
lipid bilayer (see Fig. 3).

d) The lag time linearly increases with substrate (phos-
pholipid), holding constant the enzyme concentration. In
fact, the surface density of bound enzymes φ̄E decreases
on increasing the phospholipid concentration φ̄L accord-
ing to the obvious relationship (valid far from the com-
plete surface coverage): φ̄E

∼= Keq(φ̄tot
E /φ̄L), where Keq

is the equilibrium binding constant and φ̄tot
E is the stoi-

chiometric enzyme concentration in the whole suspension
(water + phospholipids). Replacing the above expression
for φ̄E into equation (37b), one immediately finds a linear
relationship between the induction time t′ind and the phos-
pholipid concentration. This prediction nicely agrees with
recent data in the literature [17,21,49], provided the com-
parison is made with experiments falling within the range
of validity of the present theory (enzymes/lipids � 1).

e) The temperature dependence of the lag time is rather
complex. Temperature could modify the kinetic constants,
diffusion coefficients and miscibility parameters. Several
experimental studies pointed out a strong enzyme acti-
vation at, or near, the gel to liquid crystal thermotropic
phase transition of phospholipids [19,50,51]. In this re-
gion domains with different composition and conforma-
tional states (gel-like and fluid-like) coexist within the
lipid bilayer (see, e.g., Ref. [31]). Our model completely
neglects the lipids internal conformational states, hence,
in its present form, the theory cannot describe enzyme
kinetics in a membrane where both compositional and in-
ternal degrees of freedom of the lipid molecules are si-
multaneously varying. From a qualitative standpoint it
is reasonable to guess wider enzyme fluctuations on ap-
proaching the gel to liquid crystal phase transition of the
lipid matrix, hence the encounter probability among the
enzymes to form active dimers (or multimers) is enhanced.
The whole issue, however, deserves further analysis.
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f) Many substances may affect the phospholipase enzyme
kinetics by modifying the phase properties of the lipid
matrix. Indeed, classical thermodynamics predicts a dra-
matic effect of traces of a third component on the mix-
ing properties of two partially miscible fluids (e.g., Refs.
[52,53]). Therefore, either hydrophobic molecules soluble
within the lipid matrix, or multivalent ions, which bind
to the charged head groups tightening the lipid bilayer,
could modify the enzyme activity without directly inter-
acting with the protein structure (e.g., Refs. [14,54–56]).

g) So far we have investigated only the early stages of
the enzyme kinetics. The extension of model to the late
stages in difficult and must follow different pathways [11–
13]. Here we qualitatively discuss a likely scenario for the
late evolution of phospholipase A2 catalysis. When the
products concentration reaches a critical value, the sys-
tem undergoes a phase separation [21,43]. If the enzyme is
more soluble in the products-rich phase, the kinetics slows
down because of the reduced substrate concentration near
the enzyme (Fig. 2, panel C). This effect has not been
considered in our model where the enzyme-phospholipid
encounter probability is assumed to be independent of the
untransformed phospholipid concentration (see Sect. 3.2),
an approximation permissible in the early stages of the
kinetics but invalid upon macroscopic phase separation.
Therefore, in the late stages of the kinetics, or upon ex-
ogenous addition of excessive amounts of products, one
should observe a progressive enzyme inhibition, a result
which has been suggested by some authors (e.g., Ref. [57]).

h) The onset and growth of compositional heterogeneities
of different size L (or, equivalently, with wavevector
q = 2π/L) follows a different time evolution. Mi-
crodomains with small q’s appear early, however, their
contribution to the enhancement of the enzyme kinetics is
very small (∝ q4, see Eqs. (38)). Therefore, there should
be a critical size for fluctuating domains which determines
the greatest enhancement of enzyme activity, this criti-
cal size being smaller than that of macroscopic domains
(q −→ 0) but much larger than the molecular dimensions
(q −→ 1). Although there is a widespread consensus that
the phospholipase A2 enzyme activation is related to dy-
namic micro-heterogeneity, the above result may held to
understand why a burst of enzyme activity is sometimes
observed even in the absence of macroscopic phase sepa-
ration, detectable by conventional calorimetric techniques
[22]. Once again this fact stresses the need for a deeper
investigation of lipid bilayer internal fluctuations.

i) The parameters which determine the extent of enzyme
activation after an induction time t′ind differ from those
which rule the duration of t′ind. From equation (38b) it is
evident that no activation is possible unless the enzyme
preferentially associates with products-rich, or products-
poor, regions (the enzyme activation is independent of the
sign of the preferential association parameter Ω, depend-
ing on Ω2; for a more complete model see appendix D).
Furthermore, the activation is also depressed by low tem-
peratures and small diffusion coefficients of enzyme and
products.

5 Concluding remarks

The irreversible thermodynamics-based theory developed
in this paper considers the influence of concentration fluc-
tuations (of enzymes, substrate and products) on the en-
zyme catalytic activity, for the special case where the fluc-
tuations are sustained by the time-varying composition of
the reacting fluid.

Apart from the correctness of the theoretical semi-
quantitative prediction discussed in the previous section,
the model introduces a conceptual improvement over a
number of different theories existing in the literature, most
of them based on elaborated formal kinetic approaches
(e.g., Refs. [16–18,58]). Indeed, in our model the concept
of products-activation of phospholipase A2 catalysis nat-
urally emerges from the following self-sustained catalytic
cycle (see Fig. 2): (A) (slow) products formation −→ (B)
enhanced concentration fluctuations because of substrate-
products poor miscibility−→ (C) enhanced formation rate
of active enzyme dimers (more soluble in the products-rich
regions) −→ (A) (Fast) products formation.

Of course, the above scheme for products-activated en-
zyme kinetics requires: a) substrate and products must
have a poor reciprocal miscibility; b) the enzyme is more
soluble in the products-rich (or substrate-rich) regions;
c) the different components are freely moving within the
lipid matrix; d) the reacting fluid does not contain a large
amount of inert solvents.

In spite of the over-simplified picture and mathemat-
ical approximations (which can be improved in future
works), the theory explains much of the unusual features
of phospholipase A2 kinetics and seems to have a wider
range of applicability in modeling a variety of phenomena
covering the broad field of chemical reactivity in dynamic
heterogeneous media [59–61].

This work has been supported by the Italian Consiglio
Nazionale delle Ricerche (CNR) and Ministero della Ricerca
Scientifica e Tecnologica (MURST).

Appendix A

The chemical potential of enzyme and product(s) is cal-
culated as the functional derivative of the free energy
(Eq. (17)). After simple algebra one finds:

µE − µW = const.+ kT
[ 1

NE
log φE − log(1− φE)

−χEφE −ΩφP − κE∇
2φE − (FER − FWR)

]
(A.1a)

µP − µS = const.+ kT
[ 1

NL
(log φP − log(1− φP))

−χPφP −ΩφE − κP∇
2φP − (FPR − FSR)

]
.

(A.1b)



A. Raudino: Enzyme kinetics in fluctuating media 207

Introducing the chemical potentials (A.1a,b) into equa-
tions (27a,b), retaining only linear terms in the fluctua-

tion η
(0)
j and combining the resulting expressions for JP

and JE with equation (9b), one gets a 2 × 2 system of
linear partial differential equations

∂η
(0)
E

∂t
=DEφ̄

(0)
E

[( 1

NEφ̄
(0)
E

+
1

1− φ̄(0)
E

− χE

)
×∇2η

(0)
E −κE∇

4η
(0)
E −Ω∇

2η
(0)
P +∇2(FSR− FER)

]
(A.2a)

∂η
(0)
P

∂t
=DPφ̄

(0)
P

[( 1

NLφ̄
(0)
P

+
1

NL(1− φ̄(0)
P )
− χP

)
×∇2η

(0)
P −κP∇

4η
(0)
P −Ω∇

2η
(0)
E +∇2(FSR− FPR)

]
(A.2b)

where in a two-dimensional system ∇2 = ∂2/∂X2 +
∂2/∂Y 2 and ∇4 = ∂4/∂X4 +2∂4/∂X2∂Y 2 +∂4/∂Y 4. The

mean volume fraction of a generic j-th component, φ̄
(0)
j ≡

φ̄
(0)
j (t′), is a slowly varying function of time calculated in

the fluctuation-free (zeroth order) approximation by equa-
tions (14, 15). By expressing the random forces (FSR(r)−
FER(r)) and (FSR(r) − FPR(r)) as a superposition of si-
nusoidal waves, (see Eq. (20)), one may easily solve the
system of differential equations (A.2a,b) obtaining the ex-
pressions (28a,b) of the main text.

Appendix B

Let us estimate the following integral in the limit
B(q)� 1∑

≡
∑
q

q4

∫ +∞

−∞

ω2 + C(q)

ω4 +A(q)ω2 +B2(q)
dω (B.1)

with A(q), B(q) and C(q) defined by equations (33) of
the main text. Making use of integral tables [62], equation
(B.1) can be rearranged as∑

=
∑
q

q4(I1 + C(q)I2) (B.2)

with:

I1 = 2

∫ ∞
0

ω2

ω4 +A(q)ω2 + B2(q)
dω =

π

h
(
√
g −

√
f)

(B.3a)

I2 = 2

∫ ∞
0

1

ω4 +A(q)ω2 + B2(q)
dω =

π

h

(
1
√
f
−

1
√
g

)
(B.3b)

where h ≡ (A2(q) − 4B2(q))1/2; f ≡ 1
2 (A − h); g ≡

1
2 (A + h). The above results are valid provided h2 > 0,

a condition always satisfied as checked by direct substitu-
tion of the analytical expressions for A(q) and B(q). Ex-
panding equations (B.3) in power series of (B(q)/A(q))2

one gets

I1 ∼=
π√
A(q)

B(q)→ 0 (B.4a)

I2 ∼=
π

B(q)
B(q)→ 0 (B.4b)

with A(q) > 0. Therefore, equation (B1) becomes∑
∼= π

∑
q

q4C(q)

B(q)
B(q)→ 0. (B.5)

Appendix C

We look for a perturbation solution of equation (37a) in
the more general case where ξPP(q) and ξEE(q) are also
functions of φ̄P(t′) and φ̄E(t′) (calculated at t′ = t′ind). The
exact expressions for ξPP(q, t′) and ξEE(q, t′) (Eqs. (36))
are

ξPP(q, t′) = −
1

NL(1− φ̄(0)
P )

+ χP − q2κP (C.1a)

ξEE(q, t′) = −
1

(1− φ̄(0)
E )

+ χE − q2κP (C.1b)

where both φ̄
(0)
P and φ̄

(0)
E depend on t′. Since φ̄

(0)
P (t′) and

φ̄
(0)
E (t′) are small, we may expand ξPP(q, t′) = ξ

(0)
PP(q) +

ξ
(1)
PP(q, t′). Hence, combining equations (C.1) with equa-

tion (14c) of the main text one gets

ξ
(0)
PP(q) =−

1

NL
+ χP − qκ2

P (C.2a)

ξ
(1)
PP(q, t′) =−

φ̄
(0)
P (t′)

NL(1− φ̄(0)
P (t′))

∼= φ̄
(0)
P (t′)/NL

∼= −At′
2

(C.2b)

where A ≡ 1
2γφ̄

2
E/N

2
E. Analogously:

ξ
(0)
EE(q) =− 1 + χE − q2κE (C.2c)

ξ
(1)
EE(q, t′) ∼=− φ̄

(0)
E (t′)

=− φ̄E/(1 + kd(φ̄E/NE)t′). (C.2d)

Equation (C.2a) is identical to equation (37b) of the main

text with ξ
(0)
jj (q) = ξjj(q). Letting t′ind = t′

(0)
ind+t′

(1)
ind+ · · · ,

exploiting the above expressions for ξ
(i)
jj (q) and combining

with equation (35), eventually we obtain

t′
(0)
ind = N−1

L (Aξ
(0)
PP(q))−1/2 + const. (C.3a)

t′
(1)
ind =

1

2
N−3

L (Aξ
(0)5

PP (q))−1/2 (C.3b)



208 The European Physical Journal B

adding together equations (C.3) yields to the leading
terms

t′ind = (2N2
E/γN

2
Lξ

(0)
PP(q))1/2(1 +

1

2N2
Lξ

(0)2

PP (q)
)

×
1

φ̄E
+ const.+ O(φ̄E) (C.4)

which, apart from the multiplicative factor (1 + (2N2
L×

ξ
(0)2

PP (q))−1), equation (C.4) is all but nothing more than

equation (37b), which preserves the φ̄−1
E dependence of

t′ind found in equation (37b).

Appendix D

So far we have neglected any variation of the mean sur-
face density of bound enzymes with bilayer composition.
According to the literature, the enzyme binding increases
with the fraction of negatively charged species (e.g., prod-
ucts) within the lipid bilayer [14,15,39]. By retaining the
catalytic scheme set forth in the main text, the products-
dependent binding can be considered by allowing for a
rapid equilibrium between the enzymes in the bulk and
those adsorbed at the interfacial region. Hence the zeroth
order constitutive equations (12) become

dC(0)
Ef

dt′
= − k+C(0)

Ef + k−(C(0)
Eb + 2C(0)

E2
+ 2C(0)

Y )

(D.1a)

−
dC(0)

Eb

dt′
= kd C(0)2

Ed −k
+C(0)

Ef + k−(C(0)
Eb +2C(0)

E2
+2C(0)

Y )

(D.1b)

dC(0)
Y

dt′
= k1C(0)

S C(0)
E2
− (k−1 + kf)C(0)

Y (D.1c)

dC(0)
P

dt′
= kf C

(0)
Y (D.1d)

where C(0)
Eb and C(0)

Ef are the zeroth order concentrations
of bound and free enzyme, respectively, while the other
symbols have been defined in equations (12) of the main
text. The new parameters k+ and k− describe the en-
zyme association and dissociation rate constants at the
membrane-water interface. For the sake of simplicity, in
writing equations (D.1a,b) we assumed that the dissocia-
tion rates of bound enzyme monomer (Eb), dimer (E2) and
activated dimer (Y) are identical, a good approximation in

the early stages of the enzyme kinetics (C(0)
Eb � C(0)

E2
and

C(0)
Eb � C(0)

Y ). The constants k+ and k− determine the
equilibrium enzyme binding constant and both of them
may depend upon membrane composition, as for instance,

on the accumulation of products C(0)
P in the lipid bilayer.

It is likely that the dissociation rate strongly depends on
the structure of the membrane, while the association rate,
which is mainly diffusion-controlled, does not significantly
change with the membrane composition (at least when the

ion-screened surface potentials are short-range). Clearly,
the products-dependent dissociation rate and the prefer-
ential binding parameter Ω introduced in Section 3.4 are
closely related. Here we escape from a detailed analysis
of the exact relationship between the k− and Ω parame-

ters letting k− ≡ k−(C(0)
P ) ∼= k−(0) + (∂k−/∂CP)C(0)

P ≡

k−(0)(1−λΩC(0)
P ), with λ a proportionality constant [63].

By exploiting the mass conservation constraint

C(0)
Eb + C(0)

Ef + 2C(0)
E2

+ 2C(0)
Y = C̄tot

E (D.2)

and following a standard perturbation procedure we get
from equations (D.1a,b) the first order result:

C(0)
Ef =

k−(0)

k−(0) + k+
− C̄tot

E + x(t′) (D.3)

x(t′)� 1 being the solution of the differential equation

dx

dt′
+ ζx = Γ C(0)

P (t′) (D.4)

where ζ ≡ (k−(0) + k+); Γ ≡ −λΩk−(0)k+C̄tot
E /ζ and,

to a first approximation, the concentration of products

C(0)
P (t′) is given by equation (14b). Solution of equation

(D.4) together with the boundary condition x|t′=0 yields

C(0)
Ef
∼=

k−(0)

k−(0) + k+
C̄tot

E −
1

2
ξt′

2
(D.5)

where ξ ≡ λΩγ k−(0)k+3

(Ctot
E )3/(k−(0) + k+)4 (γ defined

by Eq. (15)), a result valid when (k−(0) + k+)t′ � 0,
namely for a rapid equilibrium between adsorbed and free
enzymes. By inserting the above result into (D.1) and

(D.2), one may calculate C(0)
Eb , C(0)

E2
, C(0)

Y and C(0)
P . Here

we report the final equation for the products:

C(0)
P
∼=

1

2

φ̄2
E

N2
E

γt′
2
(1 +

1

6
λΩγ

k−(0)

k−(0) + k+

φ̄2
E

N2
E

t′
2

+ · · · )

(D.6)

where φ̄E/NE ≡ C(0)
Eb
∼= k+Ctot

E /(k−(0)+k+) is the concen-
tration of bound enzymes at equilibrium. By comparing
equation (D.6) with equation (14b) of the main text, one
may conclude that the effect of the preferential binding of
the enzyme onto products-rich regions is not very impor-
tant in the early stages enzyme kinetics unless there are
very high enzyme concentrations or slow equilibria among
free and bound enzymes. Hence, the approximate expres-
sion (14b) is a good approximation in the range of validity
of the theory.

Let us apply the results obtained so far to calculate
the fluctuation enhanced enzyme kinetics (i.e., the terms

C(1)
j ) by following the procedure outlined in Section 3.5.

The final equation for the induction time t′ind is identical
to equation (37b) of the main text, apart from a multi-
plicative constant W , namely

t′ind
∼= W (t′ind)0 (D.7)
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where (t′ind)0 is the induction time calculated for a con-
stant surface concentration of bound enzymes while W
accounts for the enhanced enzyme binding due to prod-
ucts formation. An approximate analytical expression for
W turns out to be

W ∼= 1−
λΩ

24N2
LξPP(q)

k−(0)

k−(0) + k+
∼= 1 Ω −→ 0

(D.8)

where W linearly depends on the preferential solvation
parameter Ω [64].

Appendix E

The aim of this appendix is to get an estimate of the en-
zyme activation prior to the burst of activity. This goal can
be reached by expanding in equation (34) the fluctuation

term about t′ind. In this limit we get: 〈〈η(0)2

E (t′′)〉V 〉τ ∼=
4πkTD2

Eφ̄
2
Eq

∑
q4C(q, t′′)/B(q, t′′) and the coefficients

C(q, t′′) and B(q, t′′) (defined by Eq. (33c)) become

C(q, t′′) ≡ (QPP −
FP

FE
QEP)2

= D2
Pφ̄

(0)2

P (t′′)q4(
1

NLφ̄
(0)
P (t′′)

− ξPP(q) +Ω)2

∼=
t′′→t′

ind

q4Ω2D2
P/N

2
Lξ

2
PP(q) (E.1)

where the last identity follows from equation (37b). Anal-
ogously, the coefficient B(q, t′′) (Eq. (33b)) can be ex-
panded as

B(q, t′′) ≡ QPPQEE−QPEQEP =q4DPDEφ̄
(0)
P (t′′)φ̄

(0)
E (t′′)

×
[( 1

NEφ̄
(0)
E (t′′)

− ξEE(q)
)( 1

NLφ̄
(0)
E (t′′)

− ξPP(q)
)
−Ω2

]
∼=

t′′→t′ind

q4DEDP

×(2γξPP(q))1/2 φ̄E

N2
E

(t′ind − t
′′) + O((t′ind − t

′′)2). (E.2)

Where, once again, extensive use of equation (37b) has
been made. Inserting (E.1) and (E.2) into (34) and rear-
ranging, we get

〈〈η(0)2

E 〉V 〉τ ∼= 2πDEDPkT (NE/NL)2φ̄E(2/γ)1/2Ω2

×
∑
q

q4

ξ
5/2
PP (q)

1

t′ind − t
′′

+ O(φ̄2
E). (E.3)

With the aid of the above formula, equation (34) can be
easily integrated twice (over t′′ and t′) giving to the lead-
ing terms the result reported in equation (38) of the main
text.
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